# 

30+ Years · 100 Members

## **Igniting Progress:** From Big Data to **Bold Solutions**





#### **About the Cover**

Even as we look toward a future with many more electric vehicles on the road, increasing the efficiency of traditional internal combustion engines remains vital to curbing harmful emissions. To aid in this task, Joonsik Hwang and Charles Michael Gibson from the Mississippi State University Center for Advanced Vehicular Systems are working with researchers at Sandia National Laboratories to capture the complexities of fuel combustion in detailed computer simulations.

With computation performed at Mississippi State University's Malcolm A. Portera High Performance Computing Center, the researchers use their models to generate data and visualizations probing the fluid dynamics within combustion engines, allowing them to study how different fuels break down and mix during the combustion process. The insights derived from these simulations can be used to predict the behavior and efficiency of alternative fuel mixtures, as well as to help researchers confirm these predictions with physical experiments. Ultimately, the work aims to help industrial partners improve fuel efficiency, reduce  $CO_2$  emissions, and supplement gasoline with renewable fuels.

Copyright Joonsik Hwang, Mississippi State University and Phoevos Koukouvinis, City, University of London

#### Contents



### About CASC

#### The Coalition for Academic Scientific Computation (CASC) is a nonprofit organization dedicated to the use of advanced computing technology to accelerate discovery.

For over 30 years, CASC has represented many of the nation's most forwardthinking research computing and data services organizations — a vibrant community of excellence that today totals 100 member organizations. By providing a voice for this broad coalition of members, facilitating the exchange of ideas and resources, and advocating for funding and policies to enable the field to reach its full potential, CASC advances our community's vision for a robust, sustainable research ecosystem to support national competitiveness, global security, economic success, and a diverse and well-prepared 21st century workforce.

#### **CASC** Mission

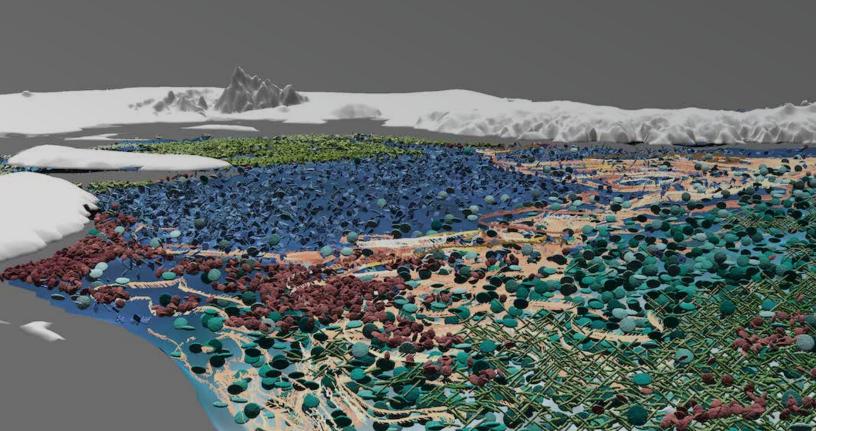
- To advocate for the importance of and need for public and private investment in research computing and data services to support academic research.
- To serve as a trusted advisor to federal agencies on the direction of relevant funding programs.
- To actively engage in discussions of policies related to research computing and data services.
- To foster advancement of a robust and diverse community of current and emerging leaders in this field.
- To provide a forum for the community to share strategic ideas and best practices.

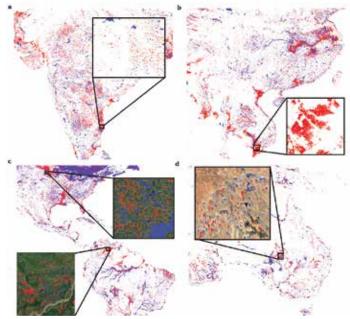
#### **CASC Executive Committee\***

- Chair: Jim Wilgenbusch, University of Minnesota
- Vice Chair: Rich Knepper, Cornell University
- Secretary: James Barr von Oehsen, Rutgers University
- Treasurer: Dave Hart, National Center for Atmospheric Research
- Past Chair: Wayne Figurelle,
  Pennsylvania State University
- Director: Kathryn Kelley
- Past Chair: Wayne Figurelle,

#### **Communications Committee**

- Melyssa Fratkin, Texas Advanced
  Computing Center (*Chair*)
- Andrew Bell, University of Virginia
- Marisa Brazil, Arizona State University
- Brian Connelly, University of Pittsburgh
- Ben Tolo, San Diego Supercomputer Center
- Kristin Lepping, Rutgers University
- Paul Redfern, Cornell University Center for Advanced Computing
- Stephanie Suber, Renaissance
  Computing Institute


# Capturing Climate Complexities


#### Visualizing Change Beneath the Ice

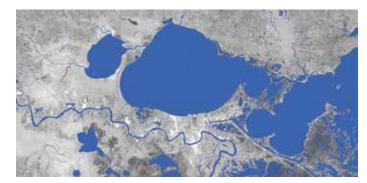
To predict how increasing temperatures might affect sea-level rise and coastal communities in the coming century, it is critical to study how ice is melting across Earth's polar regions, especially in the ice shelves that form where a glacier or ice sheet flows down to the coastline, extending over the (warming) sea. However, most of this melting occurs on the bottom of the shelves where it is difficult to track.

An interdisciplinary group of experts – including ocean modelers, computer scientists, visualization professionals, and an artist came together to help scientists visualize the complex processes taking place under ice shelves. The team, which included Francesca Samsel and Gregory Abram of the University of Texas at Austin and the Texas Advanced Computing Center, Daniel Keefe from the University of Minnesota, and Mark Petersen from Los Alamos National Laboratory, developed a new process to show various types of water masses in three dimensions as well as the movement of these masses over the course of a year, interactions with the ocean floor, and mixing caused by turbulent flows. The team created this image by applying their process to Antarctica's Filchner-Ronne Ice Shelf, on the edge of the Weddell Sea, showing how four types of water masses and relevant ocean currents flow and interact beneath an ice shelf that is - for now - hundreds of feet thick. These visualizations will help scientists assess Antarctica's ice shelves at a time when some of the continent's vast bodies of ice appear to be disintegrating faster than previously thought, with alarming implications for future sea-level rise.

Copyright Francesca Samsel, TACC UT Austin






Copyright Vipin Kumar, University of Minnesota

#### Where's the Water?

Fresh water is a critical resource around the world - and one that is dwindling rapidly in many places. Tracking changes in the sizes of lakes and reservoirs can reveal how human activities affect water availability and help communities plan for future climate change. Ankush Khandelwal from the University of Minnesota Supercomputing Institute for Advanced Computational Research led the development of a comprehensive new dataset reflecting how lakes and reservoirs have varied month-by-month over more than 30 years. Called RealSAT, the dataset contains information for almost 650,000 lakes and reservoirs around the world, a significant expansion over the 250,000 water bodies within the scope of the ReaLSAT dataset that are also captured in the widely used HydroLAKES database.

Developing the dataset took the interdisciplinary team over eight years and required a new class of machine learning algorithms that combine satellite imagery with existing knowledge on the physical dynamics of water bodies. This image shows lakes identified by RealSAT and HydroLAKES (blue) as well as lakes present in RealSAT but not HydroLAKES (red). The expanded dataset offers a new view on a wide variety of water bodies, such as small reservoirs in India (a), water-intensive agriculture in Vietnam (b), natural lakes in the United States and wetlands in Venezuela (c), and shallow lakes in Australia (d). An early version of this dataset already helped scientists to automatically identify many manmade reservoirs, and researchers are now using it to study how irrigation practices affect the relationship between surface water and groundwater.





Copyright University of Alaska Fairbanks

#### **Ready to Respond**

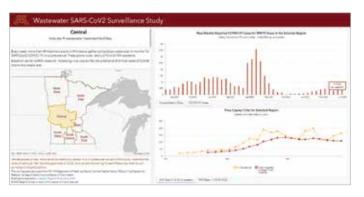
When Hurricane Harvey brought record-shattering rainfall to Texas and Louisiana in 2017, emergency responders were desperate to know which areas were flooded or likely to flood in order to guide rescue efforts. Scientist Franz Meyer from the University of Alaska Fairbanks Geophysical Institute and collaborators at NASA used remote sensing technology known as synthetic aperture radar to peer through the storm's thick cloud cover and measure water levels on the ground. But they had to scramble to manually process the satellite data, limiting their ability to provide detailed information in time.

Four years later, as Hurricane Ida barreled toward the Louisiana coastline in 2021, the team was ready. This time, Meyer and colleagues had a new tool in their arsenal: a computer algorithm, implemented using modern cloud computing technology, to automatically extract surface water measurements from satellite images. As the storm neared, the scientists produced hundreds of images using this system and met with FEMA officials daily to interpret the latest imagery, helping to inform on-the-ground decisions and save lives. This image shows surface water levels (blue) around New Orleans on Aug 29, 2021, as Hurricane Ida approached.

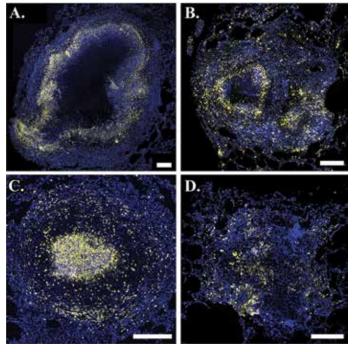
### Pioneering Health Innovations

#### **Racing for Answers on Vaccine-Linked Clots**

Despite the overwhelming success of COVID-19 vaccines, some rare side effects have emerged, triggering intensive studies to understand the causes and reduce the risk. When some vaccines were found to be linked to life-threatening blood clots — an ultra-rare adverse event called vaccine-induced thrombotic thrombocytopenia (VITT) — some countries paused vaccination campaigns as scientists raced to learn more.


Abhishek Singharoy from Arizona State University is working with scientists from the Mayo Clinic, AstraZeneca — which makes one of the vaccines linked with VITT - and other institutions to better understand what causes this dangerous condition. They found that one of the key interactions that occurs when the AstraZeneca vaccine enters a cell involves platelet factor 4 (PF4), a protein that is also involved in blood clotting. To better understand this interaction on a molecular level, the researchers ran 400 parallel simulations on Bridges-2 at the Pittsburgh Supercomputing Center. This revealed that the outer surface of the adenovirus vector that carries the vaccine is negatively charged - information that wasn't available from laboratory studies alone. This negative charge could cause PF4 to bind to vaccine components in a way that starts a signaling cascade that leads to VITT. The discovery could eventually make it possible to identify people at risk for VITT or help researchers reengineer the vaccine to prevent the adverse effect. This image shows the adenovirus vaccine vector (gray), PF4 proteins (multicolored), and the negatively charged area where PF4 binds to the vector (white/red).

**Image Above:** Copyright Chun-Kit Chan and Abhishek Singharoy, Arizona State University

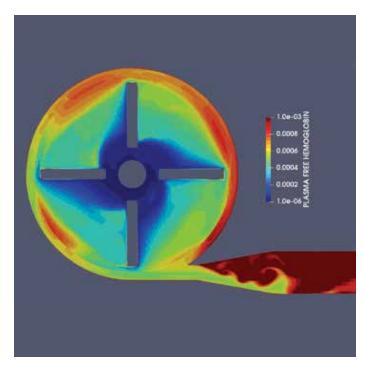

#### **Staying Ahead of COVID Cases**

Scientists have monitored wastewater to detect the spread of diseases for some time, but it wasn't until the COVID-19 pandemic that the full usefulness of this approach became apparent. Studies show that COVID-19 wastewater data can provide about two weeks' notice of viral trends, information that lets hospitals know when to prepare for a spike in cases and helps community members figure out when protective precautions are most needed. But to get these benefits, people need wastewater monitoring data to be presented in a way that's easy to understand.

To this end, Stacey Stark from the University of Minnesota U-Spatial, part of Research Computing in the Office of the Vice President for Research, created a dashboard that compares COVID-19 positivity and hospitalization rates from county public health departments with wastewater data in each of seven regions of the state. Pictured is the public-facing dashboard, which draws weekly data from more than 40 wastewater treatment plants across the state and has had over 50,000 views. Providing public access to this dashboard demonstrates public accountability for the work and has spurred the media's interest in following the data. Scientists are now working to test wastewater for additional pathogens such as polio and monkeypox, which would help expand the predictive value of this statewide network.

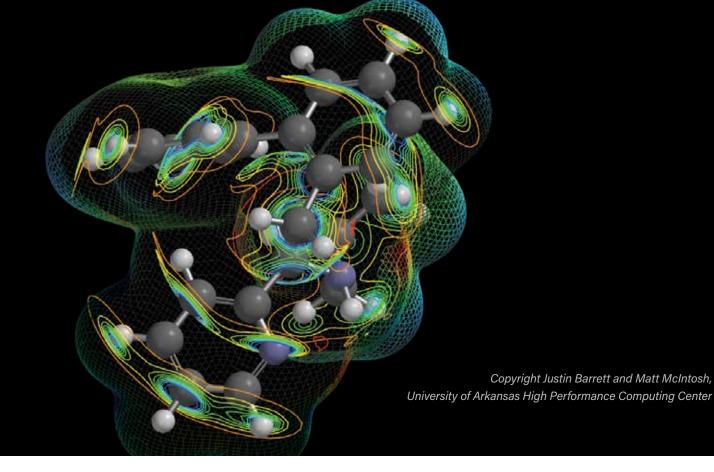


Copyright 2022 Regents of the University of Minnesota




Copyright Russ Butler, AdventHealth University and Josh Mattila, Copyright Greg W. Burgreen, Mississippi State University University of Pittsburgh

#### A Modern Take on an Ancient Disease


Tuberculosis (TB) has plagued humanity for thousands of years and still ranks among the leading causes of death worldwide, causing an estimated 10 million new cases of active disease and over a million deaths annually. This staggering toll points to a critical need to better understand the biological underpinnings of the disease so that more effective treatments and vaccines can be developed.

Denise Kirschner and colleagues from the University of Michigan Medical School are using supercomputers to study the role that To find ways to make VADs and other types of blood pumps safer immune cells known as neutrophils play in the disease. Because for patients, Greg Burgreen from Mississippi State University and of their instability, neutrophils are hard to grow and maintain in James F. Antaki from Cornell University are using simulation to the lab. The researchers decided to see if predictive simulations better understand how artificial heart pumps can damage blood. performed on the Expanse supercomputer at the University of By modeling the fluid dynamics of blood flow within and around California's San Diego Supercomputer Center could help with these medical devices, scientists can study how various factors this challenge. They created high-resolution computer models to could work together to damage blood or create clots. These images explore how neutrophils behave when inside spherical masses of show results from applying the model to a centrifugal blood pump infected TB tissues called granulomas. As researchers continue recently developed by the U.S. Food and Drug Administration to use advanced computational approaches to explore these (FDA). The researchers quantified the pump's effects on blood immunohistochemistry images further, the models can be useful dynamics by running several combinations of models and types of for making predictions that could lead to better ways to treat blood damage on the Orion supercomputer at the Mississippi State and prevent TB. Pictured are granulomas containing neutrophils University High Performance Computing Center. The predictions (yellow) at various stages of TB infection, with cell nuclei shown corroborate published experimental findings and offer additional in blue. reassurance that the FDA pump should not cause extensive damage to blood cells under typical operating conditions.



### Modeling Fluid Dynamics for Safer Medical Devices

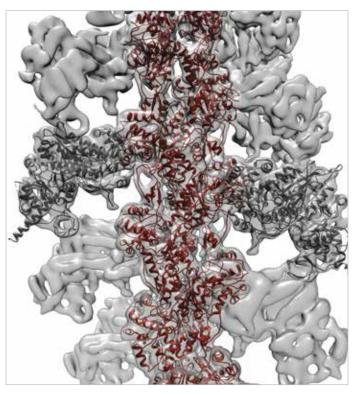
For people with severe heart failure, ventricular assist devices (VADs) — small pumps implanted in the heart to improve blood flow — are a lifesaving innovation. They can provide temporary treatment while waiting for a heart transplant or extend life for those who are not eligible for a transplant. But these devices also can damage blood cells and increase the formation of dangerous blood clots, side effects scientists are working hard to minimize.



### Big Insights from Tiny Molecules

#### A Recipe for New Drugs

In the search for new medicines, computer simulations can save researchers both time and money by reducing the need to synthesize and test chemicals that might not work. The quantummechanical atomistic simulation method known as Density Functional Theory (DFT) has proven especially valuable for rapidly and accurately modeling chemical phenomena and providing insights into why chemicals react the way they do.


Researcher Justin Michael Barrett, a Ph.D. candidate working under Matt McIntosh at the University of Arkansas, is using DFT simulation to identify pharmaceutically useful molecules and to develop recipes to synthesize these molecules. So far, he and his team have used their findings from DFT to guide the synthesis of pyridine derivatives. Related compounds are currently being screened for HIV-1 treatment and antifungal medication.

This image shows a DFT simulation of one of the pyridine-derived compounds Barrett synthesized. The molecule's electrostatic potential field lines are colorized in a gradient from blue, for a positive charge, to red, indicating a negative charge. The mesh outline represents the electronic density of the molecule and can be interpreted as the molecule's volume. Knowing the shape of the molecule and what parts of it are positively and negatively charged can help predict how and where the compound will interact with a pharmaceutical target. The simulation was performed at the University of Arkansas High Performance Computing Center.

#### **Natural Nanomachines**

Machines may have made the modern world, but as with most things, nature was there first. Recent research has revealed the intricate workings of molecular motors that operate inside every living cell. Bridging physics and biology, the study of these tiny machines can uncover new insights into the fundamental processes that sustain life and provide new tools for medical research and more.

Krishna Chinthalapudi of The Ohio State University College of Medicine and colleagues are using the Pitzer cluster at the Ohio Supercomputer Center to analyze the molecular motors involved in muscle contraction and cell division, among other functions. Shown here is an image, captured using cryo-electron microscopy, that illustrates how myosin motors (dark gray) walk on biological tracks of actin filaments (red). Using computational methods to process images from cryo-electron microscopy, X-ray crystallography, and high-resolution fluorescence microscopy enables the scientists to magnify tiny proteins and study these enzymes at work. Based on their findings, the scientists aim to identify ways to leverage molecular machines to discover new drugs or precisely deliver therapies within cells.



Copyright Krishna Chinthalapudi, The Ohio State University

#### Broadening Access to the Power of Computational Biology

Recent years have seen an explosion in the types and amount of data capturing the inner workings of our cells. Today's scientific techniques tell us not only what genes are there but how they are expressed; not only which proteins and chemicals are present, but which ones are made and consumed as cells accomplish intricate tasks. To make sense of all this information, researchers can use genome-scale models that simulate and predict biological pathways, producing detailed insights into the individual drivers behind complex cellular functions. However, the reach of these approaches has been largely limited to those with specialized training in computational systems biology.

To bring the power of computational models to more scientists, Kimberly Robasky and David Borland of the University of North Carolina at Chapel Hill Renaissance Computing Institute along with Nathan E. Lewis of the University of California, San Diego, created CellFIE. Connecting data on gene expression and metabolic processes, CellFIE generates a set of precomputed biological pathways that scientists can use as a scaffolding to help interpret their experimental results. CellFie has been used for studies such as identifying metabolic dysregulation in Alzheimer's disease and investigating the effect of certain drugs on kidney function. The ImmCellFIE portal, pictured here, provides data and CellFIE visualization tools specially curated for immunologists, helping to provide insights into the activities of the immune system and support research on vaccines, cancer, autoimmune diseases, and more.

| <b>CellFE</b> Paramete     | 96.)                                                 | Crittle Results                                                               |
|----------------------------|------------------------------------------------------|-------------------------------------------------------------------------------|
| Crigarian                  | Constant ages                                        | ments her manuals menus hitsense                                              |
| himmin                     | - Anna                                               | Terring Million Stations Investments                                          |
| Maple<br>animold           | Global Howfolding<br>parameters<br>Neuroter of other | Dath 3 Subprod Were Otherway<br>Transmission accenter Intel Data Transmission |
|                            | annite 💿                                             |                                                                               |
|                            | . 1                                                  | Requiring the space of a section.                                             |
| Description<br>MPA Critic  |                                                      | VITAMINA E DORALITOR                                                          |
|                            | Notes .                                              |                                                                               |
| Select Subgroup<br>Company | 10 · · · · · · · · · · · · · · · · · · ·             |                                                                               |
| to available               | in unitered                                          |                                                                               |
| UI AND                     | 141 - 3                                              | LIFES AMAG ACCE                                                               |
|                            |                                                      |                                                                               |
|                            |                                                      |                                                                               |

Copyright David Borland 2022

### Seeing **Patterns in** the Past

#### Using 'Eyes in the Sky' for Heritage Preservation

People have inhabited the part of the world now known as Afghanistan longer than almost anywhere else on the planet, with evidence of human communities dating back as far as 50,000 years. We have much to learn from the traces of our early ancestors, yet modern agriculture, development, and wars have destroyed many irreplaceable artifacts. To find and protect sites of cultural and historic importance before it's too late, Gil Stein of the University of Chicago Oriental Institute is using state-of-theart remote sensing and computer vision technology to uncover promising archaeological sites like the one pictured here.

For the project, called the Afghan Heritage Mapping Project, Stein and colleagues trained an AI algorithm with images from declassified Cold War-era spy plane photographs, hand-drawn topographic maps, and satellite and LIDAR scans, using the computational resources of the University of Chicago Research Computing Center to process vast amounts of data about Afghanistan's vast terrain. Trained on 3,200 sites labeled by human researchers, the AI model scans the entirety of Afghanistan, cut up into 70 million individual tiles, in roughly a week, finding promising patterns that are then manually validated by researchers to further hone the model. The approach has already used LIDAR data to recognize evidence of ancient sites that wouldn't have been visible to the naked eye and helped researchers focus on areas faced with imminent threat - helping to forge connections across cultures and centuries and preserve our shared past.

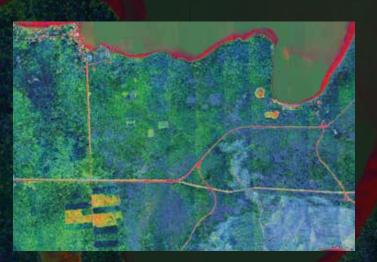




Copyright Mitsui Bunko

#### **Codes of Commerce**

Relationships are at the heart of any business. Over the years, people have used a variety of methods to document identities and relationships when making business commitments such as financial arrangements and legal contracts. In East Asia, personalized stamps such as the ones pictured have often taken the place of signatures in this role. University of Pittsburgh researcher Raja Adal studies these stamps for insights into corporate histories and the nature of communication, trust, and certification.


University of Virginia (UVA) political scientist Paul Freedman and When Adal began working with documents of the Mitsui Mi'ike colleagues from UVA's School of Data Science and Research Computing teamed up to document Twitter conversations involving Mine, a Japanese coal mine that operated throughout much of the 20th century, it quickly became apparent that the company's America's leaders, producing a unique database for political trove of tens of thousands of pages of documents sporting close to analysis. Their system captures and stores each tweet to and from 100,000 stamps would be an exceptionally rich dataset. However, a every major presidential candidate and elected U.S. President large number of the stamps only appear a few times each, creating since the 2016 primaries — a collection of about 1 billion tweets to a "long tail" distribution that makes it challenging to analyze the date. Rather than simply documenting what messages candidates enormous dataset with conventional machine learning methods. and presidents send out, the database reflects what messages Led by Paola Buitrago at the Pittsburgh Supercomputing Center people send to these leaders, a rich resource to understand the (PSC), scientists from PSC, the University of Pittsburgh, Carnegie interplay of online conversations with real-world endorsements, Mellon University, and DeepMap Inc. took up this challenge, scandals, and polling. using PSC's Bridges and Bridges-2 systems to build a new twostep machine learning method that allows for a more flexible AI algorithm capable of recognizing rare data points. In addition to the historical research value of helping Adal explore a unique window into the workings of a large Japanese corporation, the work represents a microcosm of a much larger issue in deep learning. By finding better ways to handle imperfect, long-tail datasets, the team's new AI approach can be used as a benchmark for other image classification algorithms with a similarly open-ended and highly unbalanced class set.

#### **Tweets by the Billion**

Social media has fundamentally altered political communication, delivering messages from candidates and elected officials directly into the hands of the people – and giving people a ready means to talk back. While the power of surveys and focus groups to provide useful insights on Americans' political views may be waning, the potential to tap into the dynamic conversations happening on social media is on the rise.



### Revealing the Hidden Environment



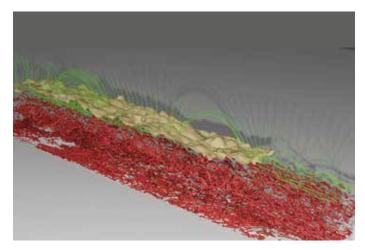
Copyright Kyla Dahlin, Michigan State University

#### A Full Color View of Carbon Capture

Anticipating the future effects of climate change requires a nuanced understanding of where carbon dioxide ends up on the planet. Since trees use carbon dioxide to grow, they help to keep this greenhouse gas out of the atmosphere and some have proposed large-scale tree-planting programs as a way to curb climate change. However, it has been difficult for scientists to calculate just how much carbon dioxide trees take in because it varies by species, location, and season.

Kyla Dahlin from Michigan State University (MSU) is using a technique called hyperspectral imaging to get a better picture of how the trees in various places take up carbon. By using both the visible and shortwave infrared portions of the spectrum, hyperspectral imagery allows scientists to map the locations of particular tree species and create global predictions of how much carbon trees can absorb. Pictured is a composite image derived from a hyperspectral image of the University of Michigan Biological Station in August 2019. Differences in color within the forest represent differences in leaf chemistry and forest structure, which in turn influence how much carbon a forest can absorb. The Airborne Observation Platform, a light aircraft operated as part of the National Ecological Observatory Network, collected the hyperspectral images, which scientists processed at the MSU High Performance Computing Center in collaboration with Scott Stark from MSU, Shawn Serbin from Brookhaven National Laboratory, and the MSU Institute for Cyber-Enabled Research. This work, funded by the National Science Foundation, will help forest managers better manage forests for carbon uptake and monitor forests as they change in the future.

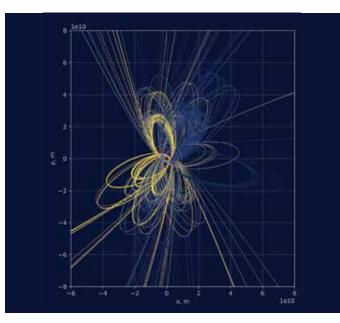



Copyright R.C. Gatti, P.B. Reich, J. Liang, and GFBI Consortium 2022 Copyright S. Balachandar, University of Florida

#### Searching for Undiscovered Trees —Before They Disappear

Even though scientists and foresters have studied trees for centuries, it is still difficult to get an accurate picture of how many tree species exist in the world. Most tree diversity estimates rely primarily on published lists of species known to exist in particular areas, but some areas are much more heavily studied than others, creating significant gaps in our knowledge of species diversity at a global scale. continue to flow in underwater channels known as turbidity currents. These currents carry large amounts of sediments and often create biodiverse oases along the sea floor. Some are as deep as the Grand Canyon and travel for hundreds to thousands of miles, transporting large amounts of carbon, nutrients, and fresh water through the world's oceans.

How these sediment-laden currents can travel so far without Jingjing Liang from Purdue University led a group of researchers mixing with ocean water has been something of a scientific in using new data from The Global Forest Biodiversity Initiative mystery. S. Balachandar and colleagues at the University of Florida (GFBI) and TREECHANGE to estimate the number of tree species developed mathematical simulations to better understand how at the biome, continental, and global scales. GFBI consists of these currents remain self-contained. The key is a middle layer that abundance-based records for over 28,000 species of trees, and lies between the current's smooth, mostly turbidity-free top layer TREECHANGE contains occurrence-based data on distributions, - closest to the ocean water - and the churning, sediment-laden traits, and phylogeny for around 65,000 identified tree species. layer near the ocean floor. This middle layer prevents the near-floor The researchers used these datasets to compare species diversity turbulence from penetrating into the layer near the ocean waters across different spatial scales. Their calculations, performed using by transferring energy back from turbulence to average flow. Purdue University Research Computing resources, showed an estimated 73,300 species of trees around the world, about 14% This image shows the complex internal structure of an underhigher than previously estimated. The results suggest that most ocean turbidity current. The middle layer (brown surface) buffers of the yet-to-be identified species are rare and only found on a the clear ambient water (green lines) from the turbid, sedimentsingle continent. They also tend to grow in tropical or subtropical rich part of the current (red). The simulation was performed climates where many forests are facing significant risks from using HiPerGator, the University of Florida's supercomputer. The logging, mining, and other activities. unprecedented insights from these simulations can inform oceanrelated science and engineering in a variety of areas, including by This image shows estimates of the number of tree species and helping experts to more accurately estimate the extent and nature number of trees on each continent, with images of some of the most of offshore oil reservoirs.

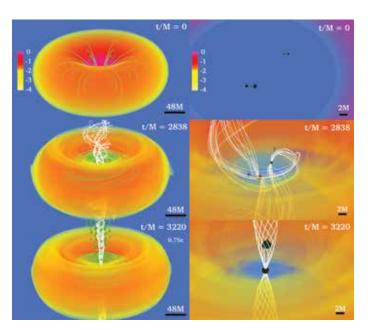

This image shows estimates of the number of tree species and number of trees on each continent, with images of some of the most common tree species surrounding the map. Green areas represent global tree cover. The researchers merged the GFBI dataset (blue) with the TREECHANGE data (purple) to estimate tree cover and species diversity. Blue represents sample areas where species abundance data were collected, and purple represents sample areas where only species incidence/occurrence information is available.



#### **Cracking the Secrets of Underwater Oases**

As rivers run into the ocean, they don't just vanish - rather, they

### **Beyond the Horizon**




Copyright Yuri Shimane, Georgia Institute of Technology

#### The Hunt for Habitable Planets

People have long dreamed of finding habitable worlds beyond our solar system. But even if we achieved the technology necessary for interstellar space travel, many other challenges would need to be overcome in order to identify the most promising planets and sites for human settlement. To begin to grapple with some of these issues, the European Space Agency's Advanced Concepts Team and the Genetic and Evolutionary Computation Conference challenged experts around the world to compete to solve three complex optimization problems in an imagined space exploration scenario.

Yuri Shimane from the Georgia Institute of Technology tackled one of the problems: mapping the optimal trajectories for automated probes to survey the planets of the Trappist-1 star system. This real-life star system is thought to host as many as seven terrestrial planets, four of which show evidence of liquid water. For the challenge, Shimane calculated the paths a hypothetical probe could travel to tour the system in order to determine the best planets for habitation and identify suitable human settlement sites while minimizing fuel consumption and flight time. This image represents the 100 most optimal trajectories, according to the analyses. Contradicting objectives within the challenge created trade-offs that resulted in multiple families of trajectories with a wide variety of incoming directions and ellipse sizes. The work was done at the Georgia Institute of Technology Partnership for an Advanced Computing Environment.



Copyright Mit Kotak, University of Illinois at Urbana-Champaign

#### What Happens When Black Holes Collide?

Black holes represent one of the deepest mysteries of space. The gravity in these regions of space-time is so strong that nothing can escape - not even light. New telescope observations have revealed a dramatic magnetic swirl action occurring when two black holes come together, but scientists do not fully understand the complex physical processes that occur during this type of merger.

To take a closer look at merging black holes, Mit Kotak along with the Illinois Relativity Group led by Stuart Shapiro from the University of Illinois at Urbana-Champaign simulated the process on a supercomputer at the National Center for Supercomputing Applications. The simulation required new mathematical models that combined Einstein's equations describing the gravitational field around a black hole with equations governing the motion of matter moving close to the speed of light in a magnetic field. It took about six months to perform all the calculations necessary to produce these visualizations of the process. The simulation time is indicated by t/M, and the scale bar at the bottom indicates the black hole mass. Models like these help astronomers and astrophysicists measure and interpret observations of far-away cosmic events; for example, the jets coming from the black holes in this visualization could be measured by electromagnetic emission detectors, and the colors contain light intensity fluctuations that can be detected by large telescopes such as Pan-STARRS in Hawaii.

#### **Dancing With the Stars**

Stars emerge and perish over almost unfathomable scales of time and space, yet we are all connected with even the most distant cosmic phenomena through the physics of the universe and our innate human curiosity. In a stunning blending of science and art led by University of Arizona (UA) researcher Kay He (Yuanyuan), dancers took to the stage against an immersive backdrop of astrophysical simulation to tell the story of a star from birth to death. The performance, called Stellarscape, was developed as an interdisciplinary collaboration involving faculty from the UA departments of Dance, Music, Astronomy, and School of Information, with visualization support from Devin Bayly and the computational resources of UA Research Computing. The dancers' movements, tracked with a series of cameras and a virtual reality device, were used as inputs to render astronomical simulation snapshots in real time, creating an interactive experience. Linking the grace of human movement with the rhythms of the universe, the science-inspired multimedia work offered an inspiring new way for audiences to connect with the cosmos and their own curiosity.

Copyright Yuanyuan (Kay) He, University of Arizona



### The Art of Inspiration



Copyright Robert Twomey, University of Nebraska-Lincoln

#### **Putting the Art in Artificial Intelligence**

Machine learning (ML) and artificial intelligence (AI) may be best known for powering robots and informing data-driven decisions in fields from finance to medicine, but these techniques are also ushering in a new era of computer-assisted creativity in the arts and humanities. Robert Twomey of the University of Nebraska-Lincoln is using the Crane system at the University of Nebraska Holland Computing Center to experiment with new forms of media arts and explore how ML and AI can extend human perception and imagination.

Twomey's experiments have included a neural network trained on children's artwork (pictured here), a ML-generated visual essay reflecting on the historical concept of the sublime, and a live performance of an AI-written radio play. Incorporating creative applications of these technologies into classes, Twomey trains students to be "computation artists," developing fluency with ML and compute-intensive workflows via hands-on exercises to creatively apply different models, compare them to human creations, and gain a deeper understanding of AI and ML techniques.





Visualization framework by Nicholas Polys and Srijith Rajamohan;Copyright Kimberly Mann Bruch, San Diego Supercomputer Centerphoto copyright Alex Parrish for Virginia Techat the University of California San Diego

#### Fuel for Thought

Upheavals in energy markets have brought increased attention to nuclear power as a long-term, low-carbon domestic energy source, but the ability to safely store spent nuclear fuel is a key priority if nuclear power is to play a larger role in our energy future. Achieving this requires meticulous engineering as well as a workforce with the expertise necessary to support tomorrow's nuclear technologies.

Virginia Tech researchers Alireza Haghighat and Valerio Mascolino are advancing both of these goals with the Real-time Analysis for Particle-transport and In-situ Detection (RAPID) Code System, a simulation platform that allows users to interact with nuclear technology and collaborate with colleagues through a highresolution multi-user virtual reality (VR) interface. The system is designed to help engineers optimize the safety of spent-fuel storage across a variety of containers, assemblies, and configurations, and it has also proven valuable as a teaching tool. This image shows nuclear engineering students working with the simulation to examine how different designs affect the fate and security of spent fuel inside the high-resolution virtual reality room managed by Virginia Tech Advanced Research Computing.





#### Learning to Love Data

Before Amara Sanchez ever heard of data science, she already had a hand in the field — literally. The middle schooler developed a habit of recording her interactions with others in a series of symbols drawn on her hand, demonstrating an instinct for data collection that would serve her well in the year she spent analyzing the pH of a local river. That project ultimately earned Sanchez and her partner Maniya Zwicker, both from the Pala Band of Mission Indians in southern California, recognition as "Best New Team" in a national competition.

As important as the experience was to the students, their participation in the program also reflected an important development for the competition itself. DataJam, launched in 2013 as an initiative of Pittsburgh DataWorks' Cheryl Begandy, also a staff member of the Pittsburgh Supercomputing Center (PSC), challenges teachers and students to apply data analytical skills through an annual competition. Unlike most student competitions, DataJam lasts an entire school year, giving middle and high school teams time to plan and complete an independent research project while developing data analysis skills. When the COVID-19 pandemic hit, organizers wondered if the program would have to shut down, but soon realized that virtual collaboration could offer an opportunity to expand DataJam's geographic scope beyond Pittsburgh. Thanks to connections from a long-standing relationship between PSC and the San Diego Supercomputer Center, the program welcomed teams from across the country, including a team from New Jersey, in addition to Sanchez and Zwicker from California. As DataJam enters its tenth year, organizers aim to continue to expand the program into a truly national contest, bringing students, teachers, and mentors together from across the United States to foster the next generation of data science leaders.

### **CASC** Membership

**30+ Years · 100 Members** 

Albert Einstein College of Medicine Department of Information Technology Arizona State University Research Computing **Boston University** Brown University Center for Computation and Visualization Carnegie-Mellon University & University of Pittsburgh Pittsburgh Supercomputing Center Case Western Reserve University Core Facility Advanced Research Computing Chan Zuckerberg Biohub CZ BioHub Scientific Computing City University of New York High Performance Computing Center Clemson University Computing and Information Technology (CCIT) Columbia University Cornell University Center for Advanced Computing Dartmouth College George Mason University Georgetown University UIS Georgia Institute of Technology PACE Harvard University Icahn School of Medicine at Mount Sinai Indiana University Pervasive Technology Institute Johns Hopkins University Lawrence Berkeley National Laboratory Louisiana State University Center for Computation & Technology (CCT) Massachusetts Green High Performance Computing Center Michigan State University High Performance Computing Center Mississippi State University High Performance Computing Collaboratory (HPC2)

National Center for Atmospheric Research (NCAR) New York Genome Center New York Structural Biology Center Simons Electron Microscopy Center New York University North Dakota University System Northwestern University NYU Langone Hospitals Oak Ridge National Laboratory (ORNL) Center for Computational Sciences Ohio Supercomputer Center (OSC) Old Dominion University Information Technology Services Princeton University **Purdue University Research Computing Rensselaer Polytechnic Institute** Rice University Ken Kennedy Institute for Information Technology (K21) Roswell Park Comprehensive Cancer Center **Rutgers University** Southern Methodist University Stanford University Stony Brook University Research Technologies Texas A&M University High Performance Research Computing Texas Tech University High Performance Computing Center The George Washington University The Pennsylvania State University The University of Alabama at Birmingham IT-Research Computing The University of Texas at Austin Texas Advanced Computing Center (TACC)

University at Buffalo, State University of New York Center for Computational Research

University of Alaska Fairbanks Research Computing Systems

University of Arizona Research Computing

University of Arkansas High Performance Computing Center

University of California, Berkeley Berkeley Research Computing

University of California, Davis HPC Core Facility

University of California, Irvine Research Cyberinfrastructure Center

University of California, Los Angeles Institute for Digital Resear and Education

University of California, Merced Cyberinfrastructure and Research Technologies

University of California, San Diego San Diego Supercomputer Center (SDSC)

University of Chicago & Argonne National Laboratory Research Computing Center

University of Cincinnati Research Technologies

University of Colorado Boulder

University of Connecticut

University of Florida

University of Georgia Advanced Computing Resource Center (GACRC)

University of Hawaii Information Technology Services

University of Illinois at Chicago Advanced Cyberinfrastructure f Education and Research

University of Illinois at Urbana-Champaign National Center for Supercomputing Applications (NCSA)

University of lowa

University of Kentucky Center for Computational Sciences

University of Louisville

University of Maryland Division of Information Technology

University of Massachusetts

University of Miami Institute for Data Science and Computing

University of Michigan Office of Research

|     | University of Minnesota Minnesota Supercomputing Institute for Advanced Computational Research |
|-----|------------------------------------------------------------------------------------------------|
|     | University of Nebraska Holland Computing Center                                                |
|     | University of Nevada, Las Vegas National Supercomputing<br>Institute (NSI)                     |
| g   | University of Nevada, Reno Research Computing                                                  |
|     | University of New Hampshire Research Computing Center                                          |
|     | University of New Mexico Center for Advanced Research<br>Computing                             |
| rch | University of North Carolina at Chapel Hill                                                    |
|     | University of North Carolina at Chapel Hill Renaissance<br>Computing Institute (RENCI)         |
|     | University of Notre Dame Center for Research Computing                                         |
|     | University of Oklahoma Supercomputing Center for Education and Research                        |
| h   | University of Oregon Research Advanced Computing Services (RACS)                               |
|     | University of Pittsburgh Center for Research Computing                                         |
|     | University of Rhode Island                                                                     |
|     | University of Southern California Information Sciences Institute                               |
|     | University of Tennessee at Chattanooga SimCenter                                               |
|     | University of Tennessee National Institute for Computational Sciences (NICS)                   |
|     | University of Texas at San Antonio Research Computing                                          |
| for | University of Utah Center for High Performance Computing                                       |
|     | University of Virginia Research Computing (RC)                                                 |
|     | University of Wyoming Advanced Research Computing Center (ARCC)                                |
|     | Vanderbilt University Advanced Computing Center for Research and Education                     |
|     | Virginia Tech Advanced Research Computing                                                      |
|     | Washington University in St. Louis                                                             |
|     | West Virginia University                                                                       |
|     | Yale University Yale Center for Research Computing (YCRC)                                      |
|     |                                                                                                |



### Coalition for Academic Scientific Computation

1717 Pennsylvania Ave., NW, Ste. 1025 Washington, DC 20006

casc.org